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ABSTRACT 15 

Land degradation is a problem prolific across semi-arid areas world-wide. Despite 16 

being a complex process including both biotic and abiotic elements, previous attempts 17 

to understand ecosystem dynamics have largely been carried out within the disparate 18 

disciplines of ecology and hydrology which has led to significant limitations. Here, an 19 

ecohydrological framework is outlined, to provide a new direction for the study of 20 

land degradation in semi-arid ecosystems. Unlike other frameworks that draw upon 21 

hierarchy theory to provide a broad, non-explicit conceptual framework, this new 22 

framework is based upon the explicit linkage of processes operating over the 23 

continuum of temporal and spatial scales by perceiving the ecosystem as a series of 24 

structural and functional connections, within which interactions between biotic and 25 

abiotic components of the landscape occur. It is hypothesised that semi-arid land 26 

degradation conforms to a cusp-catastrophe model, in which the two controlling 27 

variables are abiotic structural connectivity and abiotic functional connectivity, which 28 

implicitly account for ecosystem resilience, and biotic structural and function 29 

connectivity.  It is suggested therefore that future research must (1) evaluate how 30 

abiotic and biotic function (i.e. water, sediment and nutrient loss/redistribution) vary 31 

over grass-shrub transitions and (2) quantify the biotic/abiotic structure over grass-32 
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shrub transitions, to (3) determine the interactions between ecosystem structure and 1 

function, and interactions/feedbacks between biotic and abiotic components of the 2 

ecosystem.   3 
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Introduction 9 

Semi-arid areas occupy approximately 17% of the global land mass (UNEP 1992).  A 10 

major form of land degradation in different semi-arid areas is the invasion of 11 

grasslands by shrubs, for example, in the USA (Brown et al., 1997; Van Auken, 12 

2000), Australia (Krull et al., 2005), Patagonia (Aguiar et al., 1996) and China 13 

(Cheng et al., 2007). The degradation of grasslands typically affects herbaceous 14 

productivity, and therefore the sustainability of pastoral, subsistence and commercial 15 

livestock grazing (Fisher, 1950).  In addition, invasion by shrub species induces a 16 

change in surface processes, notably increased runoff and erosion (Abrahams et al., 17 

1995; Parsons et al., 1996; Wainwright et al., 2000) and a change in the spatial 18 

distribution of soil properties that affect ecological and hydrological processes 19 

(Müller et al., in press; Schlesinger et al., 1996). Biophysical and biogeochemical 20 

changes that occur during the invasion of grasslands by shrubs may affect land 21 

surface-atmospheric interactions, thus potentially affecting ecosystems world-wide 22 

due to global biogeochemical feedbacks (Peterjohn and Schlesinger, 1990; 23 

Schlesinger et al., 1990). Given the consequences of  grassland degradation at local, 24 

regional and global scales, management strategies need to be developed for 25 

rangelands to enable their sustainable use in order to prevent further grassland to 26 

shrubland transitions, to reverse transitions where possible, and to provide policy 27 

makers with relevant information about the ecological and hydrological implications 28 

of land-management decisions that may accelerate grass to shrub transition (Wilcox 29 

and Thurow, 2006).  30 

 It is widely acknowledged that grassland to shrubland transitions display non-31 

linear, threshold dynamics, which means that restoration of degraded landscapes is 32 

unlikely to be feasible without substantial intervention and economic input (Friedel, 33 

1991; Pardini et al., 2003). Vegetation proxy data from the northern Chihuahuan 34 
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desert, USA, indicates that during the Holocene there were cycles of grassland to 1 

shrubland transitions that were proceeded by shrub-grass transitions (see review in 2 

Wainwright, 2005). Furthermore, other proxy data show recurrent droughts with a 3 

100-130 year periodicity (Clark et al., 2002). Thus, it is evident that shrubland to 4 

grassland transitions are possible under certain conditions; however, understanding of 5 

semi-arid degradation remains limited, particularly given the potential for grassland 6 

degradation to exhibit non-linear, threshold dynamics which hinders our ability to 7 

interpret and manage these ecosystems.  8 

 It is being increasingly recognised that to improve the present-day 9 

understanding of land-surface processes in semi-arid areas, an interdisciplinary 10 

approach is required, that transcends the boundaries between ecology and hydrology 11 

(for example Müller et al., in press; Schlesinger and Pilmanis, 1998), in the hybrid 12 

discipline of ecohydrology (Kundzewicz, 2002; Newman et al., 2006; Porporato and 13 

Rodriguez-Iturbe, 2002; Wainwright et al., 1999; Wilcox and Newman, 2005). Early 14 

definitions of ecohydrology, for example, Rodriguez-Iturbe (2000), who defines 15 

ecohydrology as “the science which seeks to describe the hydrological mechanisms 16 

that underlie ecologic pattern and processes”, focussed primarily on the hydrological 17 

influences upon ecology and little on the ecological influences on hydrology. 18 

Newman et al. (2006) define ecohydrology as being ‘a hybrid discipline which seeks 19 

to elucidate how hydrological processes influence the distribution, structure, function 20 

and dynamics of biological communities and how feedbacks from biological 21 

communities affect the water cycle’. Although still somewhat hydrologically biased, 22 

the definition of ecohydrology of Newman et al. (2006)  incorporates to a greater 23 

extent than most, the ecological feedbacks that influence hydrology. The increasing 24 

recognition of the importance of ecohydrological considerations in understanding 25 

semi-arid ecosystem dynamics has enforced the need for future research to consider 26 

the two-way interactions between and interdependence of ecological and hydrological 27 

processes.  28 

 The aim of this paper is to develop a framework to further understanding of 29 

semi-arid land degradation that explicitly considers the interactions between 30 

ecological (biotic) and hydrological (abiotic) processes, over the array of time/space 31 

scales over which these processes operate. In this paper, specific emphasis is placed 32 

on understanding the processes and dynamics of grassland degradation in the south-33 

west USA, although broader ecohydrological issues that are globally relevant are also 34 
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addressed.  This paper is split into four key sections. The first section outlines the 1 

basis for a new ecohydrological framework. The second section outlines the proposed 2 

ecohydrological framework. The third section outlines key features of semi-arid land-3 

degradation, leading onto the identification of future research that needs to be carried 4 

out in order to fulfil the outlined ecohydrological framework. The fourth section 5 

presents the hypothesised dynamics of semi-arid land-degradation that explicitly takes 6 

into consideration the features outlined in the ecohydrological framework 7 

Basis of an ecohydrological framework for understanding semi-arid land 8 

degradation 9 

Semi-arid ecohydrology has largely focussed on the vertical interactions between the 10 

soil-plant-atmosphere interface, in particular,  on soil moisture and plants (Caylor et 11 

al., 2006; Porporato et al., 2002; Porporato and Rodriguez-Iturbe, 2002; Rodriguez-12 

Iturbe, 2000; Rodriguez-Iturbe et al., 1999) since soil moisture is perceived to be at 13 

the heart of the hydrological cycle and plants are the main component of the terrestrial 14 

ecosystem (Porporato and Rodriguez-Iturbe, 2002). There is a common perception 15 

that plant-available soil moisture can be determined by sparse measurements of soil-16 

moisture. However, this approach disregards the effects of other hydrological 17 

processes, namely runoff and runon infiltration in determining the spatial patterns and 18 

amount of available soil moisture. While soil moisture is a key ecohydrological 19 

variable, because it forms a crucial link between hydrological and biogeochemical 20 

processes (Rodriguez-Iturbe, 2000), consideration of soil moisture alone is 21 

insufficient to address the array of ecohydrological interactions that govern semi-arid 22 

vegetation dynamics (Huenneke and Schlesinger, 2004). However, even in more 23 

recent literature, such as D’Odorico and Porporato’s edited book, Dryland 24 

Ecohydrology (2006), there is still insufficient recognition of the rôle of aspects of 25 

semi-arid hydrology other than soil moisture, in particular, surface runoff and its rôle 26 

in redistributing resources through the landscape is almost entirely neglected.  27 

 In semi-arid ecosystems, it is already well-established that hydrology exerts a 28 

profound influence over other abiotic components of the landscape, primarily erosion 29 

(Wainwright et al., 2000), and the loss or redistribution of key plant-limiting nutrients 30 

such as nitrogen (Parsons et al., 2003; Schlesinger et al., 1999; Schlesinger et al., 31 

2000).  It is therefore argued that semi-arid ecohydrology warrants consideration of 32 

ecological processes and the suite of hydrology-driven abiotic processes over space 33 
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and through time. The realisation that ecohydrology should consider biotic and abiotic 1 

interactions through space and time is not new. For instance, Caylor et al. (2006:1) 2 

stated that “the biotic pattern of vegetation serves to redistribute key abiotic resources 3 

such as energy, water and nutrients in important ways that are critical to the dynamics 4 

of the community through space and time”. Thus, there has been recognition of the 5 

importance of biotic/abiotic interactions on shaping ecosystem response, but in 6 

practice, there has been little attempt to explore these interactions which are thought 7 

to govern semi-arid vegetation dynamics. Newman et al. (2006) in their ‘Scientific 8 

vision’ of ecohydrology in water-limited systems, identified crosscutting 9 

ecohydrological challenges that require further study: issues of spatial complexity, 10 

scaling and thresholds, and feedbacks and interactions. The ecohydrological 11 

challenges outlined by Newman et al. (2006) have already been addressed in various 12 

guises within the disparate ecological and hydrological disciplines, broadly in terms 13 

of hierarchy theory (for example Bergkamp, 1998; Cammeraat, 2002; Peters et al., 14 

2006; Peters and Havstad, 2006), non-linear dynamics within the catastrophe-theory 15 

framework (for example Laycock, 1991; Lockwood and Lockwood, 1993; Scheffer et 16 

al., 2001; Scheffer and Carpenter, 2003), and varied interpretations of connectivity 17 

within both ecology (for example Turner et al., 1993; With et al., 1997) and 18 

hydrology (for example Bracken and Croke, 2007; Müller et al., 2007; Western et al., 19 

2001). 20 

 The following discussion explores how previous studies seeking to understand 21 

semi-arid vegetation transitions have drawn upon hierarchy theory, hydrological and 22 

ecological connectivity and non-linear dynamics, and develops them within an 23 

ecohydrological context, to form the basis for an ecohydrological framework to 24 

understand semi-arid land degradation.  25 

 26 

Hierarchy theory 27 

Hierarchy theory is a theory of scaled systems (O'Neill et al., 1989) which has been 28 

widely adopted in ecology as a tool for transcending issues of scale, and has received 29 

some recognition in geomorphology (for example Bergkamp, 1998; Cammeraat, 30 

2002). With reference to hierarchy theory, O’Neill et al. (1989) proposed that spatial 31 

and temporal scales are the natural consequence of nonlinear biotic and abiotic 32 

interactions in complex ecological systems. Recent applications of hierarchy theory in 33 

conceptual frameworks for studying grassland degradation (Peters et al., 2006) have 34 
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focussed primarily on biotic characteristics of grassland to shrubland transitions over 1 

spatial scales, without explicit incorporation of the rôle of abiotic structure and 2 

function on ecosystem processes. Peters and Havstad (2006) recognised the rôle of 3 

resource distribution and feedbacks in their hierarchical conceptual framework for 4 

semi-arid systems. However, their framework retained a sufficiently high level of 5 

ambiguity so that it is not clear how it can be utilised and employed, to provide a new 6 

insight into the way in which we can study semi-arid ecosystems to overcome the 7 

existing limitations of our understanding of transition dynamics.  8 

 A limitation of hierarchy theory as the basis for understanding vegetation 9 

transitions is its consideration of discrete spatial and temporal entities that form 10 

spatial and temporal hierarchies which describe overall ecosystem dynamics. While 11 

hierarchy theory provides a methodical way of conceptualising the differences in 12 

patterns and processes at each level of the spatial and temporal hierarchy, it does not 13 

explicitly provide a means of transcending scales since it does not account for the 14 

spatial and temporal connectivity between scales. The spatial and temporal 15 

connectivity between scales is particularly important in semi-arid ecosystems (see 16 

Müller et al., 2007; Peters and Havstad, 2006). Thus, since hierarchy theory cannot 17 

account for the spatial and temporal connectivity between scales, other approaches are 18 

needed in which connectivity is explicitly accounted for.   19 

 20 

Hydrological and ecological connectivity 21 

Connectivity among spatial units is an important determinant of system dynamics 22 

(Peters and Havstad, 2006). Within an ecological context, landscape connectivity 23 

refers to the degree to which the landscape facilitates or impedes (animal or 24 

propagule) movement among resource patches (Taylor et al., 1993). In this context, 25 

movement is a key component of landscape connectivity (Turner et al., 1993). 26 

Turner’s (1993) interpretation of landscape connectivity is ultimately a process-27 

orientated one, since it depends upon how processes link elements within the 28 

landscape (With and King, 1997). Landscape connectivity may be better described in 29 

terms of structural connectivity, that is the degree to which landscape elements are 30 

contiguous or physically linked to one another (Tischendorf and Fahrig, 2000; With et 31 

al., 1997), and functional connectivity, the linkage of habitat site by a process (Belisle, 32 

2005; Kimberly et al., 1997; Uezu et al., 2005; With et al., 1997; With and King, 33 

1997).  34 
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 These structural and functional notions of connectivity are implicit in the 1 

hydrological sciences, although they have not been explicitly referred to as such. 2 

Within hydrology, the term hydrological connectivity has been used in two different 3 

contexts, which are akin to use of the terms structural and functional connectivity 4 

within ecology. Bracken and Croke (2007) conceptualised hydrological connectivity 5 

as being static and dynamic. Their static conceptualisation of hydrological 6 

connectivity refers to spatial patterns such as hydrological response units, while their 7 

dynamic representation of hydrological connectivity refers to longer-term landscape 8 

development and short-term variations in antecedent conditions and rainfall inputs to 9 

the system that result in non-linearities in the hillslope and catchment response to 10 

rainfall (Bracken and Croke, 2007). Hydrological connectivity has been used to refer 11 

to the structure and heterogeneity of hydrological variables, such as the presence of 12 

soils with low infiltration capacities, and high soil-moisture content which might 13 

generate Hortonian overland flow, which is akin to the static representation of 14 

hydrological connectivity of Bracken and Croke (2007). The importance of the 15 

connectivity of patterns in affecting the hydrological response is being increasingly 16 

recognised (Grayson et al., 2002; Müller et al., 2007; Western et al., 2001: Bracken 17 

and Croke, 2007), since heterogeneities, even when present in relatively small 18 

proportions, often have drastic impacts on the overall behaviour of a system, 19 

depending upon their spatial distribution (Cappelaere et al., 2000). The overall 20 

hydrological behaviour of a system, in terms of its hydrological connectivity (used in 21 

this sense to describe how well runoff-producing areas interconnect to yield 22 

continuous flows, and thus cause erosion and redistribute sediment and nutrients) can 23 

also be considered in terms of functional connectivity. As with the ecological 24 

interpretation of structural and functional connectivity, in hydrology, it is the 25 

connectivity of structural attributes such as soil moisture that affect the functional 26 

connectivity of the landscape in terms of its ability to yield continuous flows (Müller 27 

et al., 2007; Western et al., 1998). Thus, it is the interaction between structural and 28 

functional connectivity that results in the dynamic connectivity referred to in Bracken 29 

and Croke (2007).  30 

 31 

One key difference that exists between functional connectivity in relation to structural 32 

connectivity in ecology and hydrology is the directional element of the connectivity. 33 

Hydrological connectivity is broadly defined by how abiotic components of the 34 
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ecosystem which affect hydrological function, such as the spatial configuration of soil 1 

characteristics at finer scales (Müller et al., 2007) and the configuration of 2 

hydrological response units (such as those defined by land-use) at the broader 3 

catchment scale (e.g. Kirkby et al. 2002), are connected along a topographic gradient. 4 

Ecological connectivity by contrast is not forced to be directional like hydrological 5 

connectivity, although certain components of ecological connectivity may be subject 6 

to abiotically imposed directionality, for instance seed dispersal by wind and water or 7 

biotically imposed directionality by animals. Furthermore, structural factors 8 

influenced by hydrology will impose some directional influence over ecological 9 

connectivity.   10 

 Ecological functional connectivity refers principally to the movement of biota 11 

(animals and propagules) around the ecosystem, and hydrological functional 12 

connectivity refers principally to the flow of water, sediment and nutrients over the 13 

landscape. Thus, ecological functional connectivity and hydrological functional 14 

connectivity have a common element, movement, which is in both cases determined 15 

by the structural connectivity of the ecosystem.  The properties that determine the 16 

structural connectivity of the ecosystem within hydrology and ecology are broadly 17 

speaking the same, biotic and abiotic components of the ecosystem. Herein lies the 18 

difficulty in interpreting ecosystem dynamics in terms of disparate hydrological 19 

processes and ecological processes: biotic and abiotic structural components of the 20 

ecosystem cannot be disentangled, since they modify, and are modified by each other. 21 

The rôle of vegetation structure on modifying the hydrological response (in terms of 22 

its modification of abiotic properties through biotic-biotic feedbacks) is widely 23 

recognised (Abrahams et al., 1995; Bochet et al., 2000; Boer and Puigdefabregas, 24 

2005; Pardini et al., 2003; Parsons et al., 1996; Puigdefabregas, 2005; Wainwright et 25 

al., 2000) since vegetated and bare ground patches form interconnected units within 26 

the larger patch mosaic, which determines if, and how patches interact and strongly 27 

affects the downslope routing of water, sediments and nutrients (Imeson and Prinsen, 28 

2004).  Furthermore, it is not only the extent to which vegetation patches prevail on a 29 

hillslope that exert an influence on runoff and erosion (Boer and Puigdefabregas, 30 

2005), but also the spatial organisation of bare and vegetated surfaces, such that it is 31 

the size, length and connectivity of bare areas that determines the processes in 32 

operation at the hillslope scale (Cammeraat, 2004). Implicit in the recognition that 33 

vegetation exerts a major influence over functional hydrological connectivity, are the 34 
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biotic-abiotic feedbacks that modify abiotic structural components of the landscape 1 

that ultimately determine functional connectivity.  2 

 There are very clear, but previously unstated links between ecological and 3 

hydrological interpretation and understanding of connectivity, since it is impossible to 4 

disentangle biotic and abiotic interactions, as will be discussed further below. Thus, 5 

the structural connectivity of the landscape determines the propensity of the landscape 6 

to possess biotic and abiotic functional connectivity (but the degree of functional 7 

connectivity that arises from structural connectivity will be species/vector specific), 8 

which in turn modifies biotic and abiotic structural connectivity.  9 

 10 

Non-linear dynamics 11 

It has long been proposed that the dynamics of semi-arid grassland to shrubland 12 

transitions conform to the threshold concept whereby perturbations cause a system to 13 

cross a threshold and move toward another state (Laycock, 1991; Westoby et al., 14 

1989). Laycock (1991) advanced upon the transitional successional notions of 15 

rangeland dynamics, by proposing the state-and-threshold model of grassland 16 

degradation in which rangeland dynamics exhibit sudden, discontinuous changes, a 17 

theory that was the precursor to subsequent non-equilibrium, catastrophic 18 

conceptualisations of rangeland dynamics (for example Lockwood and Lockwood, 19 

1993; Scheffer and Carpenter, 2003). Lockwood and Lockwood  (1993) recognised 20 

that in some cases disturbed or recovering rangelands move through a gradual, 21 

continuous series of successional changes, which has no place in Laycock’s state-and 22 

threshold model, and therefore identified the need for a model of rangeland dynamics 23 

that allows for both successional and state-and-threshold dynamics.  24 

 The concept of threshold is directly related to the concepts of catastrophe 25 

theory, because in both cases abrupt changes occur across a defined boundary (Graf, 26 

1988). Catastrophe theory, originally outlined by Thom (1975) has been drawn upon 27 

to provide a qualitative description of the nature of system change, in both ecology 28 

(Loehle, 1985; Ouimet and Legendre, 1988; Rietkerk et al., 1996) and 29 

geomorphology (Graf, 1983; 1988; Thornes, 1980) in systems that possess a tendency 30 

to exhibit catastrophic behaviour (i.e semi-arid environments). 31 

 Consideration of grass to shrub transitions within the framework of the cusp 32 

catastrophe model is relevant, because the cusp catastrophe model provides a clear, 33 

conceptual outline for both the continuous (successional) and discontinuous (non-34 
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linear) nature of grass-shrub transitions. Conceptualising semi-arid vegetation 1 

transition dynamics as a cusp-catastrophe phenomenon gives rise to the recognition 2 

that even very small incremental changes in conditions can trigger a large shift in 3 

ecosystem state if a critical threshold, known as a catastrophic bifurcation is passed 4 

(Scheffer and Carpenter, 2003). Catastrophic bifurcation is akin to the idea of 5 

‘criticality’, which comprises a drastic shift in ecosystem state following only slight 6 

changes in an underlying condition (Pascual and Guichard, 2005). One of the most 7 

important ecosystem features, in consideration of catastrophic events is resilience, 8 

which refers to the capacity of a system to absorb disturbance and reorganise while 9 

undergoing change so as to retain essentially the same function, structure, identity and 10 

feedbacks (Walker et al., 2004). Hence, once the resilience of semi-arid grasslands is 11 

exceeded, a catastrophic bifurcation is passed and the ecosystem will jump to a shrub-12 

dominated state.  13 

 There are five properties that indicate catastrophic cusp behaviour which have 14 

been identified in grassland to shrubland transitions (outlined in Gilmore, 1981; 15 

Lockwood and Lockwood, 1993; Rietkerk et al., 1996) (Figure 1). Grass-shrub 16 

transitions exhibit (1) bimodality, which is when an ecosystem has two distinct 17 

vegetation states (represented by the two surfaces of the cusp), i.e. grassland and 18 

shrubland. A region of (2) inaccessibility separates the grassland and shrubland states, 19 

which is the folded part of the cusp that represents a region of inaccessibility; 20 

therefore the system cannot be stable within that region, and so the ecosystem is 21 

unlikely to persist in this state for very long, because of its propensity to make a (3) 22 

sudden jump to an alternative state, seen when a trajectory reaches the edge of the 23 

cusp (the area of inaccessibility). Thus, the ecosystem will exhibit (4) divergence, 24 

which refers to relatively small changes in control variables that result in markedly 25 

different behaviours of the systems. The ecosystem will exhibit (5) hysteresis, which 26 

means that the trajectory of change in ecosystem structure and function associated 27 

with a jump in one direction (i.e. grass-shrub) is different from the trajectory resulting 28 

in a jump in the opposite direction (shrub-grass). 29 

 Laycock (1991) recognised the need to identify and understand the factors 30 

which force a stable community across a threshold, thinking which is in line with the 31 

more recent work of Scheffer et al. (2001) which suggests that the prevention of 32 

significant perturbations is a major goal of ecosystem management. Therefore, the 33 

majority of research into grass-shrub transitions has focussed solely on the 34 
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identification of thresholds, and not on developing understanding of the processes that 1 

cause a threshold to be crossed. However, there exists a fundamental problem with 2 

research being directed solely at the identification of thresholds: environmental 3 

thresholds are not necessarily constant, since the position of a threshold along a 4 

determining variable may change (Walker and Meyers, 2004), as would be predicted 5 

by the cusp-catastrophe model.  When there are several variables determining 6 

ecosystem dynamics, it becomes evident that determining the position of the threshold 7 

becomes somewhat more complex particularly when the resilience of an ecosystem is 8 

considered (Walker et al., 2004).  Ecosystem resilience is a dynamic property, which 9 

means that the position of a threshold may also be dynamic. Therefore, not only might 10 

the position of a threshold change depending upon the resilience of the ecosystem, so 11 

too might the depth of the basin of attraction, making it easier or harder to approach 12 

the threshold (Walker and Meyers, 2004). Efforts to reduce the risk of grass-shrub 13 

transitions should therefore address the gradual changes that affect resilience rather 14 

than merely control disturbance (Scheffer et al., 2001). Given the emphasis of 15 

dynamism, in terms of resilience and the position of thresholds, what is needed to 16 

understand and manage vegetation transitions is a more comprehensive mechanistic 17 

knowledge of ecohydrological dynamics. Understanding ecohydrological dynamics 18 

will enable changes in abiotic and biotic feedbacks, with reference to properties such 19 

as resilience and the position of thresholds, to be determined under different external 20 

environmental conditions and internal ecosystem dynamics.  21 

 While it is widely acknowledged that grassland to shrubland transitions exhibit 22 

a catastrophic response, the changing processes and biotic/abiotic interactions 23 

operating over space/time that underpin the transition dynamics remain largely 24 

unknown. Understanding grass-shrub transitions as cusp-catastrophe phenomena 25 

reinforces the requirement to understand ecohydrological interactions, since different 26 

ecosystem states or dynamic regimes are enforced by positive feedbacks between 27 

plants and their environment that ultimately creates high ecosystem resilience. 28 

Didham and Watts (2005) proposed that systems with inherently strong abiotic 29 

regimes, such as semi-arid grasslands and shrublands, may (1) be made prone to enter 30 

resilient alternative states (2) switch more readily to an alternative stable state 31 

following a lower level of perturbation or (3) be more difficult to restore than systems 32 

that are weakly structured by environmental adversity. Therefore, given the non-33 

linear, threshold dynamics of grassland degradation, a full consideration of how 34 
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ecohydrological interactions vary over the course of shrubland invasion is required, 1 

and perhaps even more importantly, how ecohydrological interactions vary as 2 

grassland resilience is compromised.    3 

 Hierarchy theory presents a clear way of considering the suite of processes 4 

operating over space and through time, and has been used previously as the basis for 5 

several frameworks studying semi-arid ecosystem dynamics. While hierarchy theory 6 

provides a clear conceptual outline of the scale-dependent nature of ecosystem 7 

properties, in practical terms it does not lend itself to the explicit consideration of 8 

abiotic and biotic interactions over a continuum of spatial and temporal scales.  9 

 The discussion of connectivity within ecology and hydrology has revealed that 10 

although notions of connectivity have arisen relatively independently in these 11 

disparate disciplines, both recognise two features of connectivity: structural and 12 

functional connectivity. Consideration of ecosystem processes in terms of structural 13 

and functional connectivity between abiotic and biotic components of the ecosystem, 14 

over a continuum of space/time scales provides a direct means of explicitly 15 

determining ecosystem dynamics in terms of both ecology and hydrology.   16 

 The current understanding of semi-arid land degradation may be developed by 17 

exploring degradation within the cusp-catastrophe framework, but this requires that 18 

biotic and abiotic elements of the ecosystem be understood, in terms of both their 19 

structure and function, and the connectivity between these elements, in spatial and 20 

temporal terms.  21 

The ecohydrological framework for understanding semi-arid land 22 

degradation 23 

The proposed ecohydrological framework is based upon (1) interactions between 24 

abiotic and biotic ecosystem components in terms of their structure and function, (2) 25 

the connectivity of structure and function through time and space and (3) the 26 

evolution of ecosystem structure and function over space/time scales as these are the 27 

factors that have been identified as being paramount in understanding semi-arid land 28 

degradation. An outline of the framework is presented in Figure 2.  29 

 30 

Interactions between ecosystem structure and function 31 

Ecosystem structure exerts a profound influence over ecosystem function, which in 32 

turn determines ecosystem structure. Thus, it is the combined influence of biotic and 33 
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abiotic components of ecosystem structure that determine biotic and abiotic function 1 

which in turn redefine biotic and abiotic structure. Therefore, it is necessary that the 2 

ecohydrological framework considers structural connectivity in relation to functional 3 

connectivity.  4 

 5 

Connectivity of structure and function through time and space and its evolution  6 

Ecosystem structure, and thus biotic and abiotic connectivity, evolves through time 7 

and space, determined by functional processes operating over a continuum of 8 

timescales. By drawing upon the notion of connectivity to transcend spatial and 9 

temporal scales, thereby avoiding transposition of scale errors (O'Neill, 1988), there is 10 

a recognition that structure and function at one scale is influenced (non-linearly) by 11 

structure and function at other scales; thus a mechanistic interpretation of the 12 

behaviour of a system can only be derived by assessment of the extent to which 13 

ecosystem structure and function are connected through time and space.  14 

 15 

Adopting the outlined framework to understand semi-arid degradation 16 

The ecohydrological framework (Figure 2) depicts the key biotic/abiotic and 17 

structural/functional interactions over space and time that need to be revealed if we 18 

are to understand semi-arid land degradation. At present, the ecohydrological 19 

understanding of semi-arid ecosystems remains very limited. Because previous field-20 

based experiments to understand semi-arid ecosystems have not been carried out 21 

within an ecohydrological context, their experimental designs are largely reflective of 22 

existing ecological or hydrological research structures which are not necessarily 23 

conducive to studying biotic and abiotic interactions.  For instance, most of the 24 

current hydrological understanding in semi-arid areas is derived from small-scale plot 25 

studies (for example Brazier et al., 2007; Parsons et al., 2006), understanding from 26 

which needs to be coupled with other approaches so that consistent understanding of 27 

ecohydrological systems over the continuum of space/time scales can be achieved 28 

(Wainwright et al., 2000). Thus, in view of the outlined framework, further 29 

experimental approaches are required to achieve the advanced level of 30 

ecohydrological understanding that is required for the comprehensive study of semi-31 

arid grass-shrub transitions. The following section provides a review of what is 32 

already known about land degradation, focussing on research form the south-western 33 

USA, to identify the future research that needs to be carried out in order to determine 34 
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the interactions and feedbacks between the components outlined in the 1 

ecohydrological framework.  2 

 3 

Overview of land degradation in the south-western USA 4 

Degradation in semi-arid areas world-wide is often exemplified by a change in type, 5 

cover and spatial distribution of vegetation (Boer and Puigdefabregas, 2005; 6 

Huenneke et al., 2002), and the concurrent increase in runoff and soil erosion 7 

(Abrahams et al., 1995; Boer and Puigdefabregas, 2005; Pardini et al., 2003; 8 

Wainwright et al., 2000; Wainwright et al., 2002), which are widespread land-9 

degradation problems because of their contributions to water and soil-fertility losses 10 

(Lado and Ben-Hur, 2004; Martinez-Mena et al., 2001). The complex interplay of 11 

landscape feedbacks between the spatial distribution of vegetation, runoff and erosion 12 

also results in the spatial redistribution of soil properties, including soil-moisture and 13 

nutrient content (Cross and Schlesinger, 1999; Müller et al., in press), particle-size 14 

characteristics and soil organic matter content. An interrelated set of conditions 15 

determines the susceptibility of land to degradation, which include, but are not 16 

exclusively restricted to the seasonal distribution and amount of rainfall, vegetation 17 

resilience, vegetation distribution, soil characteristics and topography (Dregne, 1977). 18 

 19 

Drivers of land degradation 20 

In the south-western United States, the invasion of grassland by shrubs has been 21 

attributed to various driving forces, including overgrazing (Buffington and Herbel, 22 

1965), increasing carbon dioxide concentrations (BassiriRad et al., 1997) and 23 

changing precipitation amount and distribution (Brown and Archer, 1999; Gao and 24 

Reynolds, 2003; Neilson, 1986), although it is likely that a combination of driving 25 

forces are responsible for land degradation. These driving forces are thought to induce 26 

grass to shrub transitions because of the different responses that the species exhibit to 27 

changing environmental conditions, due to their differing physiological and 28 

phenological characteristics and the ways in which they modify, and are modified by 29 

the structure of the environment they inhabit. For example, grass species such as black 30 

grama (Bouteloua eriopoda)  have a finely divided, well developed root system, 31 

mainly located in the uppermost 25 cm of soil (Campbell and Bomberger, 1934). Thus 32 

black grama can be very responsive to summer moisture and can greatly increase its 33 
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cover in enhanced moisture conditions (Gosz and Gosz, 1996; Noy-Meir, 1973).  1 

However, the potential for plant growth in the summer is affected by the length of the 2 

spring drought, because the death of the root and shoot tissue reduces the number of 3 

growing points capable of utilizing the summer rainfall (Gao and Reynolds, 2003). In 4 

contrast, shrubs, such as creosotebush (Larrea tridentata), are highly drought-resistant 5 

and have deep tap roots that are able to access deeper soil-moisture reserves 6 

(MartinezMeza and Whitford, 1996; Whitford et al., 1997), therefore, even after 7 

drought conditions, shrubs are able to establish readily (Herbel and Gibbens, 1996). 8 

Furthermore, with regard to reproduction, the principal spread of black grama comes 9 

from the lateral extension of individual tufts, as a result of new perennial stems from 10 

rooted buds on the stolons (Nelson, 1934). Therefore, as black grama patches become 11 

increasingly fragmented, their potential for vegetative reproduction is reduced 12 

(Campbell and Bomberger, 1934). Although black grama has the potential to 13 

reproduce via seed production, where black grama patches are co-dominated with 14 

creosotebush, fewer seeds are produced per plant, and seeds that are produced are of 15 

reduced viability (Peters, 2002). Creosotebush however are able to reproduce 16 

whenever conditions are favourable, when resources are not limited, and reproductive 17 

growth occurs in response to rainfall events (Kemp, 1983; Reynolds et al., 1999; 18 

Rossi et al., 1999), hence the reproductive potential of creosotebush reduces the 19 

potential impact of habitat fragmentation relative to black grama.  20 

 21 

Structural and functional changes 22 

Changes in the spatial configuration of vegetation (such as the examples detailed 23 

above) occur during grass-shrub transitions. There may be a reduction in the basal 24 

area of plant biomass, and perhaps more importantly, a redistribution of plant biomass 25 

(Huenneke et al., 2002), which impacts upon, and is affected by, fundamental 26 

processes, including nutrient cycling and water and sediment fluxes (McCarron and 27 

Knapp, 2001; Schlesinger et al., 1990). The spatial configuration of vegetation has a 28 

major impact upon water, sediment and nutrient fluxes in semiarid environments, 29 

particularly under smaller runoff events, because of its role in providing resistance to 30 

flow, thus forming potential sinks in the landscape (Bartley et al., 2006) for runoff, 31 

eroded sediment and nutrients (Ludwig and Tongway, 1995; Ludwig et al., 1999). 32 

During extreme runoff events, it is likely that runoff-generating areas will become 33 

connected due to decreased transmission losses (Parsons et al., 1996) which in turn 34 
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will increase the capacity of the runoff to entrain and transport sediment, thus 1 

reinforcing the structural connectivity of the landscape that will dictate future 2 

functional responses.  3 

 In the south-western USA, runoff is typically generated by high-intensity 4 

rainfall events during the summer monsoon months, in which the infiltration capacity 5 

of the soil is exceeded, leading to the generation of infiltration-excess overland flow. 6 

It is thought that vegetation cover is one of the major factors governing runoff and 7 

erosion over semi-arid hillslopes (Abrahams and Parsons, 1991; Calvo-Cases et al., 8 

2003; Cammeraat, 2004). The vegetation cover influences the magnitude and duration 9 

of flow and amount of erosion that occurs by providing root cohesion to otherwise 10 

unconsolidated sediment, thereby impeding near surface disturbance, affecting soil 11 

infiltration characteristics and by providing resistance to flow that generally reduces 12 

flow velocity (Abrahams et al., 1994; Osterkamp and Friedman, 2000).  13 

 Numerous field-based studies have been carried out to investigate how the 14 

hydrological response and associated nutrient and sediment fluxes vary over grassland 15 

and shrubland (for example Abrahams et al., 1994; Abrahams et al., 1995; Neave and 16 

Abrahams, 2002; Schlesinger et al., 1999; Schlesinger et al., 2000; Wainwright et al., 17 

2000; Wainwright et al., 2002). The general findings of these investigations reveal 18 

that runoff responses are much greater over shrubland, because of inter-rill overland 19 

flow and ultimately the development of concentrated flow paths or rills. The high 20 

connectivity of areas of reduced infiltration in intershrub areas promotes enhanced 21 

runoff generation and flow connectivity as less runon (flow from upslope) infiltration 22 

occurs. Erosion on semi-arid hillslopes is controlled by an interaction of raindrop-23 

erosion processes and surface-flow processes thus, where there is greater vegetation 24 

cover, there is an increase in interception of raindrops, reducing their kinetic energy, 25 

and increasing hydraulic roughness due to plant stems and an increase in plant roots 26 

which bind the soil reducing its erodibility (Wainwright et al., 2000).  Thus, the 27 

reduced or altered distribution of vegetation in shrubland environments, and the 28 

increased connectivity of runoff-generating areas creates favourable conditions for 29 

higher flow velocities to be reached, thereby increasing the erosive energy of the flow 30 

and the capacity to transport sediment and nutrients leading to a net increase in 31 

erosion.  32 

 33 
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Functional and structural connectivity 1 

While most studies suggest an increase in the flow connectivity over shrubland at 2 

small scales, the extent to which flows are connected has rarely, and not yet 3 

adequately been investigated at the landscape scale, which is important in terms of 4 

overall ecosystem dynamics because runoff in semi-arid environments plays a key 5 

rôle in redistributing and/or removing nutrients. Plot-based studies have revealed 6 

concentrations of nitrogen in runoff over shrubland are lower than concentrations over 7 

grassland (Schlesinger et al., 1999), but because of increased flow discharges over 8 

shrubland relative to grassland, shrublands experience a greater overall loss of 9 

nutrients (Schlesinger et al., 2000). However, the very limited amount of research that 10 

has been carried out into runoff-related nutrient dynamics has been primarily 11 

conducted over small plots, under simulated rainfall conditions.  It has since been 12 

shown that observations of nutrient fluxes in runoff from natural rainfall events are 13 

also scale-dependent (Brazier et al., 2007), increasing with flow discharge, but at a 14 

decreasing rate as slope length increases. Therefore, research into runoff-associated 15 

nutrient fluxes warrants further consideration to overcome some of these scaling 16 

limitations, and artefacts that may be introduced by simulated rainfall or small (and 17 

short) scales of observation of  natural rainfall. 18 

 Previous research has established that changes in the spatial structure of 19 

vegetation, runoff and erosion response of the landscape are associated with a change 20 

in spatial scale of the distribution of soil properties (for example Cross and 21 

Schlesinger, 1999; Müller et al., in press; Schlesinger et al., 1996). The difference in 22 

spatial distribution and connectivity of soil properties between grassland and 23 

shrubland has both biotic and abiotic implications. The redistribution of soil resources 24 

affects the potential for plant establishment and growth, and changes soil properties, 25 

such as a change in the hydrological conductivity which affects infiltration rates, soil 26 

moisture holding capacity, and thus impacts upon the hydrological response of the 27 

landscape (Müller et al., 2007; in press; Western et al., 1998).  28 

 29 

Synthesis 30 

The differences in community structure, spatial and temporal utilisation and 31 

modification of resources, hydrology and erosion are indicative of the complexity and 32 

variation of ecohydrological interactions that occur over grass and shrublands. 33 

Research to date has focussed on how ecological and hydrological processes vary at 34 
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the end-member stages of degradation, which is insufficient to ascertain how 1 

processes interact and vary along the trajectory of degradation. An ecohydrological 2 

framework for improving the present-day understanding of vegetation transitions must 3 

consider not only the spatial changes in the distribution of plant biomass, but the 4 

associated changes in soil properties, and how they vary spatially and temporally. The 5 

feedbacks and interactions between structural and functional components of semi-arid 6 

ecosystems operate over a continuum of spatial and temporal scales, which need to be 7 

considered if we are to advance our ecohydrological understanding of semi-arid 8 

ecosystems. Figure 3 illustrates the key components of semi-arid ecosystems that 9 

require consideration in order for the ecohydrological framework to be realised (Table 10 

1). 11 

Hypothesised dynamics of semi-arid land-degradation 12 

It is already well-established that grass-shrub transitions have the propensity to 13 

display non-linear threshold dynamics which are not readily reversible, although 14 

grass-shrub transitions have been observed that conform more to the successional 15 

paradigm, in which transitions do not display hysteresis when reversed. From the 16 

ecohydrological framework, and overview of the present-day understanding of land 17 

degradation, it is hypothesised that dynamics of land degradation are conceptualised 18 

by a cusp-catastrophe model (Figure 4), in which the two controlling variables are 19 

abiotic structural connectivity and abiotic functional connectivity, which implicitly 20 

account for ecosystem resilience, and biotic structural and function connectivity.  21 

 The rationale of conceptualising land degradation within a cusp catastrophe 22 

model is that cusp catastrophe models have the capacity to explain both successional 23 

and state-and-threshold ecosystem dynamics that apply in the case of grassland 24 

degradation. In this hypothetical cusp-catastrophe model, when a driver of ecosystem 25 

change modifies ecosystem state, the dynamics of vegetation change will be 26 

determined by the biotic and abiotic structural connectivity, and the point at which the 27 

ecosystem lies along the cusp fold (determined by the history of land use and extrinsic 28 

conditions at a specific location), which will in turn determine the extent to which the 29 

ecosystem is functionally connected in terms of biotic and abiotic components.   30 

 In scenario 1, the invasion of shrubs is not associated with a major increase in 31 

abiotic structural connectivity, and so the degree of habitat fragmentation remains 32 

relatively low. When shrubs become more dominant along the trajectory of 33 
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degradation, because abiotic structural connectivity remains low, the increase in 1 

functional connectivity is not as high compared to scenario 2. Therefore, the extent to 2 

which resources become redistributed over the ecosystem is limited. Reversal of the 3 

transition is possible without the occurrence of a catastrophic jump.  4 

 In scenario 2, the grassland possesses high abiotic structural connectivity, for 5 

example, well-connected flow lines that facilitate high runoff generation and 6 

subsequent flow of high discharges. Under such conditions grass cover will be highly 7 

fragmented. The high abiotic structural connectivity will increase the propensity for 8 

vectors, such as wind and water to redistribute resources over the landscape as shrubs 9 

invade which will cause a catastrophic jump from the area of inaccessibility to the 10 

alternative shrub-dominated plane of the cusp catastrophe. Because the trajectory of 11 

degradation in scenario 2 is located on the fold of the cusp, a reversal back to 12 

grassland from the shrub-dominated state will exhibit hysteretic properties, and thus 13 

experience a catastrophic jump. In order to shift the ecosystem to a point at which a 14 

jump back to the former grass-dominated state can occur, a greater energy input to the 15 

ecosystem is required than that which caused the grass-shrub catastrophic jump, in 16 

order to surpass the positive feedbacks between biotic and abiotic entities that 17 

reinforce the shrub-dominated landscape.  18 

 Hypotheses of environmental behaviour described by the cusp-catastrophe 19 

model have a tendency to go untested. Since it has been established that both biotic 20 

and abiotic factors determine ecosystem response, it is thus proposed that a process-21 

based ecohydrological model to simulate grass-shrub transition dynamics accounting 22 

for the interactions between ecosystem structure and function, and interactions 23 

between biotic and abiotic factors, can be used to test the hypothesis. If simulations of 24 

grass-shrub transitions exhibit a similar underlying structure to that hypothesised by 25 

the cusp-catastrophe model, this would suggest that the hypothesis is broadly correct 26 

(Jones, 1977).   27 

Conclusion 28 

A framework has been outlined to provide a new direction for the study of semi-arid 29 

grass-shrub transitions. Unlike other frameworks that draw upon hierarchy theory to 30 

provide a broad, non-explicit conceptual framework, this new framework is based 31 

upon the explicit linkage of processes operating over the continuum of temporal and 32 

spatial scales by perceiving the ecosystem as a series of structural and functional 33 
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connections, within which interactions between biotic and abiotic components of the 1 

landscape occur. The perception of the ecosystem as a series of structural and 2 

functional connections and as an interactive biotic-abiotic entity facilitates the 3 

emergence of non-linear dynamics.  4 

 Existing understanding of semi-arid grass-shrub transitions is limited, due to 5 

previous attempts to understand ecosystem dynamics being carried out within the 6 

disparate disciplines of ecology and hydrology. The recent recognition of the 7 

importance of biotic and abiotic interactions in water-limited semi-arid ecosystems 8 

requires a more integrated type of ecohydrological research which seeks to unite 9 

ecology and hydrology, and consider ecosystems as an interactive biotic-abiotic 10 

entity. Research carried out within ecology and hydrology has independently drawn 11 

upon the notion of connectivity, to explore how linkages in landscape structure affect 12 

the connectivity of landscape function. Hydrological studies have already started to 13 

address the role of plant distribution and feedbacks between plants and soil on 14 

modifying hydrological structure and function. Ecological studies have started to 15 

recognise the rôle of geomorphological processes on structuring plant-soil 16 

interactions, but these have not yet been adequately addressed.   17 

 The development of a new ecohydrological framework has led to the 18 

hypothesised dynamics of semi-arid land-degradation that explicitly take into 19 

consideration the key factors outlined in the ecohydrological framework – 20 

biotic/abiotic and structural/functional connectivity over space and time. In order to 21 

test the hypothesis that semi-arid land degradation conforms to the outlined cusp-22 

catastrophe model, further experimental research needs to be carried out, within an 23 

ecohydrological context, to address the feedbacks between structure and function and 24 

abiotic and biotic components of the ecosystem over grass-shrub transitions. Future 25 

research should therefore (1) evaluate how abiotic and biotic function (i.e. water, 26 

sediment and nutrient loss/redistribution) vary over grass-shrub transitions and (2) 27 

quantify the biotic/abiotic structure over grass-shrub transitions, to (3) determine the 28 

interactions between ecosystem structure and function, and interactions/feedbacks 29 

between biotic and abiotic components of the ecosystem.   30 
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Table 1. Ecosystem components which are classified as structural/functional and 1 

biotic/abiotic. 2 
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type and distribution 
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establishment, mortality 

A
b

io
ti

c
 Soil resource distribution Hydrological response: 

Water, nutrient and sediment 

fluxes/redistribution Topography 

 3 

 4 

List of figures 5 

Figure 1. The cusp-catastrophe model, highlighting bimodality, inaccessibility, 6 

sudden jumps, divergence and hysteresis (Lockwood and Lockwood, 1993; Rietkirk 7 

et al., 1996). 8 
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Figure 2. Ecohydrological framework, highlighting the interactions between 10 

structural and functional connectivity over time and space that govern ecosystem 11 

dynamics.   12 
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Figure 3.  Illustration of ecohydrological interactions occurring over a grass-shrub 14 

transition. 15 
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Figure 4.  Hypothesised dynamics of land degradation, in the case of semi-arid 17 

grassland to shrubland transitions. 18 
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